姓名:陈雪
职称:讲师
电子邮件:xuechen@tju.edu.cn
研究方向:计算法学、复杂网络分析、深度学习
开设课程:《数据分析与数据挖掘》,《人工智能与智慧司法》,《智慧社会与网络科学》
【教育与工作经历】
时间 |
单位专业 |
学位/职务 |
2007年-2009年 |
东北大学 计算数学 |
硕士 |
2014年-2019年 |
天津大学 计算机科学与技术 |
博士 |
2019年3月至今 |
天津大学法学院 |
讲师 |
【代表性学术论文】
[1] Chen, X., Liu, C., Li, X., Sun, Y., Yu, W., & Jiao, P. (2024). Link prediction in bipartite networks via effective integration of explicit and implicit relations. Neurocomputing, 566, 127016.
[2] Yu, W., Chen, X., Li, X., Wang, J., Sun, Y., & Tang, M. (2023). VGCas: distinguishing the cascade structure and the global structure in popularity prediction. Social Network Analysis and Mining, 14(1), 2.
[3] Cheng, G., Chen, X.*, & Gong, J. (2022). Deep convolutional network with pixel-aware attention for smoke recognition. Fire technology, 58(4), 1839-1862.
[4] Chen, X., Liu, C., Gao, S., Jiao, P., Du, L., & Yuan, N. (2022, July). Graph Representation Learning for Assisting Administrative Penalty Decisions. In International Conference on Mobile Computing, Applications, and Services (pp. 316-325). Cham: Springer Nature Switzerland.
[5] Sun, Y., Wang, W., Wu, N., Yu, W., & Chen, X. (2020, October). Anomaly subgraph detection with feature transfer. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 1415-1424).
[6] Chen, X., Jiao, P., Yu, Y., Li, X., & Tang, M. (2019). Toward link predictability of bipartite networks based on structural enhancement and structural perturbation. Physica A: Statistical Mechanics and its Applications, 527, 121072.
[7] Yu, W., Wang. W., Chen, X.,*, Wu, H., Tang, M., &Yu, Y. (2019, December). Boosting Temporal Community Detection via Modeling Community Evolution Characteristics. 17th IEEE International Symposium on Parallel and Distributed Processing with Applications (IEEE ISPA 2019), pp. 936-943, 2019.
[8] Chen, X., Wang, W., Sun, Y., Hu, B., & Jiao, P. (2018, August). Integrating Latent Feature Model and Kernel Function for Link Prediction in Bipartite Networks. In International Conference on Computer Engineering and Networks (pp. 126-134). Springer, Cham.
【承担科研项目】
[1]国家重点研发子课题,2022YFC330190103,立法意见的要素识别与意见获取技术,2022.10--2025.09,30万元,负责人
[2]国家重点研发子课题,*******,2022.10--2025.09,50万元,负责人
[3]国家重点研发计划课题, 2020YFC1522602,基于大数据技术文物安全综合信息应用平台关键技术研究,2020-10 至 2023-09,284万元,课题骨干
【专利】
[1]基于任务难度评估和级联优化的立法意见审查系统及方法,2023,已受理
[2]面向跨领域的立法意见综合报告自动生成方法,2023,已受理
[3]文物重点区域危险源全方位实时智能预警方法及系统,2023,已受理
[4]面向预训练大语言模型调优的立法规划意图识别方法,2023,已受理